Обычная атомная электростанция может показаться сложным объектом, но настоящие трудности начинаются тогда, когда требуется втиснуть подобный комплекс в футляр длиной всего в несколько метров, а потом высадить его на Луне для многолетней работы без обслуживания. Да и создать АЭС мощностью как у малолитражной легковушки ничуть не проще, чем разработать станцию на несколько гигаватт.
Американская лунная база должна появиться на нашем естественном спутнике где-то после 2020 года. Среди прочих важных вопросов, которые ещё предстоит решить, видное место занимает обеспечение её энергией. Самый простой вариант — поля солнечных батарей. Но он не идеален.
Если базу строить вблизи одного из полюсов (пока учёные больше склоняются к южному), для неё надо будет подобрать очень специфическое место. Там должен быть вечно затенённый кратер (в таком, предположительно, можно будет добывать водяной лёд), но в то же время рядом необходим участок, освещаемый солнечными лучами постоянно. Либо придётся прокладывать длинные кабели от солнечных батарей к базе.
Ну а если станция будет создана не у полюса, солнечные батареи там смогут работать лишь половину лунных суток — считай полмесяца. А на вторую половину (лунную ночь) энергию нужно будет запасать в аккумуляторах колоссальной ёмкости и, соответственно, веса. А их надо ещё на Луну доставить...
Вариант с ядерной электростанцией, несмотря на усложнение комплекса, сулит массу преимуществ. Миниатюрная АЭС поставляла бы ток непрерывно, а места бы занимала — как автобус. Помнится, специалисты как-то даже высказывали идею применения ядерных ракетных двигателей в лунной программе. Но она пока остаётся предметом дискуссии — нынешний план возвращения людей на Селену предусматривает использование традиционных химических ракет. АЭС же на лунных просторах вполне может появиться.
В начале августа этого года NASA совместно с министерством энергетики США (Department of Energy) завершило первую серию важных тестов в рамках программы "Ядерный источник энергии на поверхности" (Fission Surface Power — FSP).
Выходная мощность такой станции поначалу должна составить всего 40 киловатт. Этого вполне хватит для функционирования небольшой базы, зарядки луноходов и питания разнообразного оборудования, разбросанного вокруг форпоста земной цивилизации. В дальнейшем число модулей АЭС можно будет увеличить, подняв выработку электричества вплоть до одного мегаватта, чего должно быть достаточно для работы большого лунного "посёлка".
Американские инженеры рассматривают два варианта размещения мини-АЭС на Луне: просто на поверхности и в контейнере, заглублённом в грунт. Первый проще возвести, но для обеспечения нормальной радиационной обстановки потребуется удалить электростанцию от края базы на один километр, да и вес защиты будет выше. Второй потребует "земляных работ", зато безопасное расстояние от АЭС до границы базы составит всего 100 метров, а сама станция окажется легче
Эта же станция могла бы послужить прообразом (и испытательным образцом) аналогичного источника энергии для марсианской пилотируемой миссии. Не зря о миниатюрной атомной станции мечтают "колонизаторы Марса". От каждого квадратного метра солнечных панелей на Красной планете можно получить заметно меньше энергии, чем на Земле или Луне. Проблема усугубляется ещё и пылевыми бурями. Ну и запас на ночь никто не отменял, а сколько стоит "заброска" килограмма груза на Марс?
Вернёмся, впрочем, к проекту FSP. В основе этой системы будет лежать маленький ядерный реактор (по размеру как обычное мусорное ведро), охлаждаемый жидким металлом (смесью натрия и калия). Этот поток будет направлен в тепловую машину, связанную с генератором. Как варианты специалисты рассматривают комбинацию турбины и компрессора (работающую по закрытому циклу Брайтона), термоэлектрический генератор и ряд других способов конверсии энергии. Но самый реальный кандидат, как говорят инженеры, вариант с низким уровнем технического риска, — это двигатели Стирлинга.
Именно их недавно и проверили в деле. Американская компания Sunpower построила для проекта пару расположенных друг напротив друга стирлингов-генераторов со свободными поршнями, вырабатывающих ток при подведении внешнего тепла. В тестах системы FSP в качестве источника жара использовался мощный электрический нагреватель, поставляющий этим стирлингам поток жидкого металла при температуре 550 градусов Цельсия.
Тепловой тест стирлингов проходил в космическом центре Маршалла
В серии испытаний стирлинги-генераторы вырабатывали непрерывную мощность в 2,3 киловатта, а их КПД составил 32%, сообщает американское космическое агентство. Ли Мэйсон (Lee Mason) из исследовательского центра Гленна (Glenn Research Center), один из ведущих учёных проекта FSP, отозвался о системе так: "Она очень эффективна и надёжна, и мы считаем, что система сможет работать в течение восьми лет без присмотра".
В дополнение к этим тестам стирлинги испытали на работоспособность в условиях сильной радиации, а именно — в 20 раз превышающей ту, при которой они будут действовать в составе реальной АЭС. Учёные хотели узнать, насколько могут деградировать использованные материалы от соседства с реактором и космических лучей.
Установку отвезли в лабораторию Сандия (Sandia National Laboratories), и оказалось, что даже после 26 часов такой радиационной "пытки" генераторы не показывают каких-либо изменений в работе, в том числе — падения мощности.
Другим важным элементом будущей системы являются радиаторы, призванные рассеивать в пространстве тепло от стирлингов (либо других тепловых машин-преобразователей). Материал таких панелей должен хорошо работать при экстремальном перепаде температур между лунными днём и ночью, и к тому же в вакууме. Да ещё конструкция радиатора при этом должна быть максимально лёгкой.
Инженер-испытатель NASA Марк Гибсон (Marc Gibson) готовит к тестам прототип лунного радиатора
В центре Гленна (при участии ряда промышленных компаний) разработали и построили прототип такого теплообменника размером 1,8 х 2,7 метра. Его проверили в вакуумной камере, пропуская через трубки горячую воду. Оказалось, что в "условиях Луны" радиатор эффективно отводит прочь до 6 киловатт тепла, что даже больше, чем рассчитывали создатели устройства.
Лунная электростанция потребует 20 таких панелей, добавляют инженеры. После их развёртывания размах "крыльев" станции составил бы 34 метра. При этом сама установка занимала бы 7 метров в высоту, из которых 2 приходились бы на подземную часть.
FSP в "погружённом" исполнении до и после развёртывания панелей радиаторов.
Различные варианты насосов для жидкого металла и теплообменники для него же, "умная" управляющая электроника и многие другие элементы FSP так же прошли проверку в серии недавних тестов. Следующий шаг программы — сведение всех этих узлов воедино (но пока ещё всё равно без настоящего ядерного реактора), дабы испытать работоспособность технологии в комплексе. Эта работа намечена на 2012-2014 годы, после чего можно будет "поженить" почти готовую электростанцию с крошечным "атомным котлом".
И пусть о посылке мини-АЭС на Луну официально ещё и речи не идёт, авторы системы FSP полагают, что она может оказаться очень выгодной для будущей базы. "Эта система должна быть дешёвой, безопасной и надёжной, и наши недавние испытания продемонстрировали, что мы можем успешно построить её", — заявил Дон Палас (Don Palac), руководитель проекта. По его словам, в случае положительного решения реальная станция FSP могла бы быть высажена на Селене уже в 2020 году.
Источник: membrana.ru
|